Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 19(1): 238, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183126

RESUMO

BACKGROUND: Pathophysiological consequences of traumatic brain injury (TBI) mediated secondary injury remain incompletely understood. In particular, the impact of TBI on the differentiation and maintenance of dendritic cells (DCs), which are regarded as the most professional antigen presenting cells of the immune system, remains completely unknown. Here, we report that DC-differentiation, maintenance and functions are altered on day 3 and day 7 after TBI. METHODS: Long bones, spleen, peripheral lymph nodes (pLNs), mesenteric lymph nodes (mLNs), liver, lungs, skin and blood were collected from mice with either moderate-level cortical impact (CCI) or sham on day 1, day 3 or day 7 after TBI. Bone marrow cells were isolated from the tibias and femurs of hind limb through flushing. Tissues were digested with Collagenase-D and DNase I. Skin biopsies were digested in the presence of liberase + DNase I. Single cell suspensions were made, red blood cells were lysed with Ammonium chloride (Stem Cell Technology) and subsequently filtered using a 70 µM nylon mesh. DC subsets of the tissues and DC progenitors of the BM were identified through 10-color flow cytometry-based immunophenotyping studies. Intracellular reactive oxygen species (ROS) were identified through H2DCFDA staining. RESULTS: Our studies identify that; (1) frequencies and absolute numbers of DCs in the spleen and BM are altered on day 3 and day 7 after TBI; (2) surface expression of key molecules involved in antigen presentation of DCs were affected on day 3 and day 7 after TBI; (3) distribution and functions of tissue-specific DC subsets of both circulatory and lymphatic systems were imbalanced following TBI; (4) early differentiation program of DCs, especially the commitment of hematopoietic stem cells to common DC progenitors (CDPs), were deregulated after TBI; and (5) intracellular ROS levels were reduced in DC progenitors and differentiated DCs on day 3 and day 7 after TBI. CONCLUSIONS: Our data demonstrate, for the first time, that TBI affects the distribution pattern of DCs and induces an imbalance among DC subsets in both lymphoid and non-lymphoid organs. In addition, the current study demonstrates that TBI results in reduced levels of ROS in DCs on day 3 and day 7 after TBI, which may explain altered DC differentiation paradigm following TBI. A deeper understanding on the molecular mechanisms that contribute to DC defects following TBI would be essential and beneficial in treating infections in patients with acute central nervous system (CNS) injuries, such as TBI, stroke and spinal cord injury.


Assuntos
Lesões Encefálicas Traumáticas , Células Dendríticas , Cloreto de Amônio/metabolismo , Animais , Lesões Encefálicas Traumáticas/metabolismo , Diferenciação Celular , Desoxirribonuclease I/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Nylons/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Sci Rep ; 12(1): 12311, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853935

RESUMO

Dendritic cells (DCs) play pivotal roles in initiating and shaping both innate and adaptive immune responses. The spatiotemporal expression of transcription factor networks and activation of specific signal transduction pathways determine the specification, distribution and differentiation of DC subsets. Even though pioneering studies have established indispensable roles for specific catalytic subunits (p110δ and p110γ) in immune cells, functions of the regulatory subunits, particularly of Class I PI3K, within the hematopoietic system remain incompletely understood. In the study presented here, we deleted the key regulatory subunits-p85α and p85ß of the Class IA PI3K in hematopoietic cells and studied its impact on DC differentiation. Our studies identify that a deficiency of p85 causes increased differentiation of conventional DC (cDC) 2 and plasmacytoid DC (pDC) subsets in the spleen. On the other hand, DC numbers in the bone marrow (BM), thymus and lymph nodes were decreased in p85 mutant mice. Analysis of DC-specific progenitors and precursors indicated increased numbers in the BM and spleen of p85 deficient mice. In-vitro differentiation studies demonstrated augmented DC-differentiation capacities of p85 deficient BM cells in the presence of GM-CSF and Flt3L. BM chimera studies established that p85 deficiency affects DC development through cell intrinsic mechanisms. Molecular studies revealed increased proliferation of DCs and common DC progenitors (CDPs) in the absence of p85 and altered signal transduction pathways in p85 mutant DC subsets in response to Flt3L. In essence, data presented here, for the first time, unequivocally establish that the P85α subunit of class IA PI3Ks has an indispensable role in the development and maintenance of DCs.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Células Dendríticas , Proteínas de Membrana , Animais , Células da Medula Óssea/imunologia , Diferenciação Celular/imunologia , Classe I de Fosfatidilinositol 3-Quinases/imunologia , Células Dendríticas/enzimologia , Células Dendríticas/imunologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia
3.
Sci Rep ; 9(1): 12658, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477755

RESUMO

Inflammation and inflammatory cytokines have been shown to exert both positive and negative effects on hematopoietic stem cells (HSCs) and hematopoiesis. While the significance of inflammation driven hematopoiesis has begun to unfold, molecular players that regulate this phenomenon remain largely unknown. In the present study, we identified A20 as a critical regulator of inflammation controlled hematopoietic cell fate decisions of HSCs. A20 deficiency in HSCs leads to increased differentiation of myeloid cells and myeloproliferation. Analysis of erythroid lineage cells of A20 deficient mice indicated a striking reduction of erythrocytes in the bone marrow (BM), but elevated numbers in the spleen. Loss of A20 in HSCs causes a severe blockade of B cell differentiation in the BM and absence of peripheral B cells in the spleen, liver and blood. T cell differentiation studies revealed a reduction of both T cell progenitors and differentiated T cells in the thymus and altered T cell numbers in the spleens of A20 mutant mice. Analysis of lineage committed progenitors of the myeloid, erythroid and lymphoid lineages specified an altered composition in the A20 deficient BM. Genetic studies identified that specific loss of A20 in the myeloid lineage cells results in myeloproliferation. Bone marrow transplantation studies and mixed bone marrow chimera studies suggested an involvement of inflammatory cytokines, particularly interferon (IFN)- γ, in the onset of myeloproliferation and lymphopenia of A20 deficient mice. Finally, ablation of IFNγ signals in A20 deficient mice rescued the hematopoietic defects. In essence, these studies highlight a previously unknown role for A20 in the restriction of inflammation driven pathologic hematopoiesis. We believe that our studies based on A20 mutant mice will be helpful in understanding the pathophysiology and in the treatment of patients with A20 (TNFAIP3) mutations.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Interferon gama/metabolismo , Linfopenia/metabolismo , Transdução de Sinais , Animais , Linfócitos B/citologia , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Eritroides/metabolismo , Células Eritroides/patologia , Camundongos , Linfócitos T/citologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/deficiência , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo
4.
Cell Rep ; 25(8): 2094-2109.e4, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463008

RESUMO

Constitutive activation of the canonical NF-κB pathway has been associated with a variety of human pathologies. However, molecular mechanisms through which canonical NF-κB affects hematopoiesis remain elusive. Here, we demonstrate that deregulated canonical NF-κB signals in hematopoietic stem cells (HSCs) cause a complete depletion of HSC pool, pancytopenia, bone marrow failure, and premature death. Constitutive activation of IKK2 in HSCs leads to impaired quiescence and loss of function. Gene set enrichment analysis (GSEA) identified an induction of "erythroid signature" in HSCs with augmented NF-κB activity. Mechanistic studies indicated a reduction of thrombopoietin (TPO)-mediated signals and its downstream target p57 in HSCs, due to reduced c-Mpl expression in a cell-intrinsic manner. Molecular studies established Klf1 as a key suppressor of c-Mpl in HSPCs with increased NF-κB. In essence, these studies identified a previously unknown mechanism through which exaggerated canonical NF-κB signals affect HSCs and cause pathophysiology.


Assuntos
Medula Óssea/metabolismo , Células Eritroides/metabolismo , Células-Tronco Hematopoéticas/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Animais , Ciclo Celular , Citocinas/genética , Citocinas/metabolismo , Quinase I-kappa B/metabolismo , Mediadores da Inflamação/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Mutação/genética , Pancitopenia/patologia , Transcrição Gênica
5.
Front Cell Dev Biol ; 6: 143, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425986

RESUMO

Identifying physiological roles of specific signaling pathways that regulate hematopoietic stem cell (HSC) functions may lead to new treatment strategies and therapeutic interventions for hematologic disorders. Here, we provide genetic evidence that constitutive activation of NF-κB in HSCs results in reduced pool size, repopulation capacities, and quiescence of HSCs. Global transcriptional profiling and bioinformatics studies identified loss of 'stemness' and 'quiescence' signatures in HSCs with deregulated NF-κB activation. In particular, gene set enrichment analysis identified upregulation of cyclin dependent kinase- Ccnd1 and down regulation of cyclin dependent kinase inhibitor p57kip2 . Interestingly, constitutive activation of NF-κB is sufficient to alter the regulatory circuits of transcription factors (TFs) that are critical to HSC self-renewal and functions. Molecular studies identified Junb, as one of the direct targets of NF-κB in hematopoietic cells. In essence, these studies demonstrate that aberrant activation of NF-κB signals impairs HSC quiescence and functions and alters the 'TF networks' in HSCs.

6.
Stem Cell Res ; 33: 199-205, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30445411

RESUMO

Inflammatory signals have been shown to play a critical role in controlling the maintenance and functions of hematopoietic stem cells (HSCs). While the significance of inflammation in hematopoiesis has begun to unfold, molecular mechanisms and players that govern this mode of HSC regulation remain largely unknown. The E3 ubiquitin ligase A20 has been considered as a central gatekeeper of inflammation. Here, we have specifically depleted A20 in multi-potent progenitors (MPPs) and studied its impact on hematopoiesis. Our data suggest that lack of A20 in Flt3+ progenitors causes modest alterations in hematopoietic differentiation. Analysis of hematopoietic stem and progenitor cell (HSPC) pool revealed alterations in HSPC subsets including, HSCs, MPP1, MPP2, MPP3 and MPP4. Interestingly, A20 deficiency in MPPs caused loss of HSC quiescence and compromised long-term hematopoietic reconstitution. Mechanistic studies identified that A20 deficiency caused elevated levels of Interferon-γ signaling and downregulation of p57 in HSCs. In essence, these studies identified A20 as a key regulator of HSC quiescence and cell fate decisions.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Multipotentes/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/deficiência , Animais , Diferenciação Celular , Humanos , Camundongos
7.
Stem Cells ; 34(5): 1343-53, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26850790

RESUMO

Hematopoietic stem cells (HSCs) are capable of both self-renewing throughout the lifetime of an organism and differentiating into all lineages of the blood system. A proper balance between quiescence and proliferation is critical for the self-renewal and functions of HSCs. The choice of HSCs to remain quiescent or to enter proliferation has been tightly regulated by a variety of cell intrinsic and extrinsic pathways. Identifying molecular players that control HSC quiescence and proliferation may lead to new treatment strategies and therapeutic interventions for hematologic disorders. To identify the functions of the slicer endonuclease Argonaute (Ago) 2 in the physiology of HSCs, we generated Ago2(Hem-KO) mice, that are deficient for Ago2 in HSCs and in their progeny. Analysis of Ago2(Hem-KO) mice indicated that a loss of Ago2 results in reduced HSC pool size and altered frequencies of hematopoietic progenitors. Ago2 deficient HSCs exhibit defective multilineage differentiation capacities and diminished repopulation abilities, in a cell intrinsic manner. Interestingly, Ago2 mutant HSCs remain largely quiescent and show reduced entry into cell cycle. Genome-wide transcriptome studies and gene set enrichment analysis revealed that Ago2 deficient HSCs downregulate the "HSC signature" and upregulate the "lineage signature." Moreover, our analysis on transcription factors (TFs) identified that a loss of Ago2 is sufficient to alter the "molecular signature" and "TF networks" that control the quiescent and proliferative states of HSCs. In essence, our study identified Ago2 as a key determinant of quiescence exit in HSCs. Stem Cells 2016;34:1343-1353.


Assuntos
Proteínas Argonautas/metabolismo , Ciclo Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Proteínas Argonautas/deficiência , Contagem de Células Sanguíneas , Peso Corporal , Medula Óssea/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Redes Reguladoras de Genes , Camundongos Knockout , Mutação/genética , Fatores de Transcrição/metabolismo , Transcriptoma
8.
J Exp Med ; 212(2): 203-16, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25624445

RESUMO

A balance between quiescence and proliferation is critical for proper maintenance of the hematopoietic stem cell (HSC) pool. Although a lot is known about hematopoiesis, molecular mechanisms that control HSC quiescence remain largely unknown. The ubiquitin-editing enzyme A20 functions as a central regulator of inflammation and adaptive immunity. Here, we show that a deficiency of A20 in the hematopoietic system causes anemia, lymphopenia, and postnatal lethality. Lack of A20 in HSCs results in diminished pool size, impaired radioprotection, defective repopulation, and loss of quiescence. A20-deficient HSCs display increased IFN-γ signaling, caused by augmented NF-κB activation. Strikingly, deletion of both IFN-γ and A20 in hematopoietic cells results in partial rescue of the HSC phenotype. We anticipate that our experiments will facilitate the understanding of mechanisms through which A20-mediated inflammatory signals control HSC quiescence and functions.


Assuntos
Ciclo Celular/genética , Cisteína Endopeptidases/deficiência , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Ubiquitinação/genética , Animais , Cisteína Endopeptidases/genética , Feminino , Genes Letais , Estudos de Associação Genética , Hematopoese/genética , Interferon gama/genética , Interferon gama/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Mutação , NF-kappa B/metabolismo , Fenótipo , Transdução de Sinais , Proteína 3 Induzida por Fator de Necrose Tumoral alfa
9.
EMBO Rep ; 15(7): 775-83, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24878851

RESUMO

A20 has been suggested to limit NF-κB activation by removing regulatory ubiquitin chains from ubiquitinated substrates. A20 is a ubiquitin-editing enzyme that removes K63-linked ubiquitin chains from adaptor proteins, such as RIP1, and then conjugates them to K48-linked polyubiquitin chains to trigger proteasomal degradation. To determine the role of the deubiquitinase function of A20 in downregulating NF-κB signaling, we have generated a knock-in mouse that lacks the deubiquitinase function of A20 (A20-OTU mice). These mice are normal and have no signs of inflammation, have normal proportions of B, T, dendritic, and myeloid cells, respond normally to LPS and TNF, and undergo normal NF-κB activation. Our results thus indicate that the deubiquitinase activity of A20 is dispensable for normal NF-κB signaling.


Assuntos
Cisteína Endopeptidases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , NF-kappa B/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Cisteína Endopeptidases/genética , Análise Mutacional de DNA , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Genótipo , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunofenotipagem , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Fenótipo , Choque/induzido quimicamente , Choque/genética , Choque/imunologia , Choque/metabolismo , Choque/mortalidade , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...